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Abstract

Protection from hardware attacks such as snoopers
and mod chips has been receiving increasing attention in
computer architecture. This paper presents a new com-
bined memory encryption/authentication scheme. Our new
split counters for counter-mode encryption simultaneously
eliminate counter overflow problems and reduce per-block
counter size, and we also dramatically improve authentica-
tion performance and security by using the Galois/Counter
Mode of operation (GCM), which leverages counter-mode
encryption to reduce authentication latency and overlap it
with memory accesses.

Our results indicate that the split-counter scheme has
a negligible overhead even with a small (32KB) counter
cache and using only eight counter bits per data block. The
combined encryption/authentication scheme has an IPC
overhead of 5% on average across SPEC CPU 2000 bench-
marks, which is a significant improvement over the 20%
overhead of existing encryption/authentication schemes.

1. Introduction

Data security concerns have recently become very im-

portant, and it can be expected that security will join perfor-

mance and power as a key distinguishing factor in computer

systems. This expectation has prompted several major in-

dustrial efforts to provide trusted computer platforms which

would prevent unauthorized access and modification of sen-

sitive or copyrighted information stored in the system. Un-

fortunately, such initiatives only provide a level of security

against software-based attacks and leave the system wide

open to hardware attacks [6, 7], which rely on physically ob-

serving or interfering with the operation of the system, for
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example by inserting a device on the communication path

between the microprocessor and the main memory. Some

of this communication path (e.g. the memory bus) is ex-

posed outside the processor or main memory chips and can

be tampered with easily [6, 7].

Clearly, software protection cannot adequately protect

against hardware attacks, because program variables of

the protection software itself can be stored in main mem-

ory and be subjected to hardware attacks. Instead, hard-

ware memory encryption and authentication has been pro-

posed [4, 5, 10, 11, 15, 16, 17, 19, 20, 21]. Memory en-

cryption seeks to protect against passive (snooping) attacks

on the secrecy/privacy of data and/or code. Memory au-

thentication seeks to protect against active attacks on data

integrity, which can modify existing signals and create new

ones to cause programs to produce wrong results or behav-

ior. Memory authentication is also needed to keep data

and/or code secret because active attacks can tamper with

memory contents to produce program behavior that dis-

closes secret data or code [17].

1.1. Background: Memory Encryption

Two main approaches have been proposed for memory

encryption: direct encryption and counter mode encryp-

tion. In direct encryption, an encryption algorithm such

as triple DES or AES [3] is used to encrypt each cache

block as it is written back to memory and decrypt the block

when it enters the processor chip again [5, 10, 11]. Al-

though reasonably secure, direct encryption reduces sys-

tem performance by adding decryption latency of a cryp-

tographic algorithm (such as AES) to the already problem-

atic L2 cache miss latency (Figure 1(a)). Counter mode en-

cryption [2, 12] can be used to hide this additional AES

latency [15, 16, 17, 19, 20, 21]. Instead of applying AES

directly to data, counter mode encryption applies AES to

a seed to generate a pad. Data is then encrypted and de-

crypted via a simple bitwise XOR with the pad. Although

work on message encryption proves that the seed need not

be secret to maintain secrecy of data encrypted in counter
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mode [1], it relies on a fundamental assumption that the

same seed will never be used more than once with a given

AES key [1, 12]. This is because the same seed and AES

key would produce the same pad, in which case the attacker

can easily recover the plaintext of a memory block if the

plaintext of another block (or a previous value of the same

block) is known or can be guessed.

To ensure unique seeds for memory encryption, we can

keep a single global counter for all memory blocks which

is incremented on any memory block write-back. Alterna-

tively, per-block local counters can be used and the unique

seed can be formed as a concatenation of data block’s ad-

dress and its local counter. The address part of the seed

ensures that different locations are not encrypted with the

same seed. The counter for a memory block is incremented

on each write-back to that block to ensure that the seed

is unique for each write-back to the same address. The

counter value used to encrypt a block is also needed to de-

crypt it, so a counter value must be kept for each memory

block. However, write-backs of a block could be frequent

and counters can quickly become large. Thus, per-block

counter storage must either be relatively large or a mecha-

nism must be provided to handle counter overflow. In prior

work [4, 15, 19, 20, 21], when a counter wraps around,

the AES encryption key is changed to prevent re-use of the

same pad. Unfortunately, the same encryption key is used

to encrypt the entire memory, so a key change requires re-

encryption of the entire memory. With a large memory, such

re-encryption “freezes” the system for a noticeable time.

For example, re-encryption of 4 GB of memory at a rate

of 6.4 GB/second freezes the system for nearly one sec-

ond. This is inconvenient for interactive applications and

may be catastrophic in real-time systems. If small coun-

ters are used, such re-encryptions will occur frequently and

become a significant performance overhead.
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ILP stall

(a) Direct encryption.
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(b) Counter cache hit in counter mode.

CPU
XOR

AES
MEM (data)
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(c) Counter cache miss in counter mode.

Figure 1. Timeline of a L2 cache miss.

Using a larger counter field can reduce the frequency of

these “freezes”, but they degrade memory encryption per-

formance. Counters are too numerous to keep them all on-

chip, so they are kept in memory and cached on-chip in the

counter cache, also called sequence number cache (SNC) in

other studies. Counter mode hides the latency of pad gener-

ation by finding the block’s counter in the counter cache and

beginning pad generation while the block is fetched from

memory, as in Figure 1(b). However, a counter cache miss

results in another memory request to fetch the counter and

delays pad generation as in Figure 1(c). A counter cache

of a given size can keep more counters if each counter is

small. As a result, a compromise solution is typically used

where the counters are small enough to allow reasonably

good counter cache hit rates, yet large enough to avoid very

frequent re-encryptions. However, this compromise still re-

sults in using larger counter caches and still suffers from

occasional re-encryption freezes.

1.2. Background: Memory Authentication

Current memory authentication schemes either have in-

adequate security protection or have high performance over-

heads. For example, authentication in XOM [5] cannot de-

tect replay attacks. The log hash scheme in Suh et al. [19]

employs lazy authentication in which a program is authen-

ticated only a few times during its execution [19]. The

Merkle tree scheme used in Gassend et al. [4] employs

authentication in which instructions are allowed to com-

mit even before their data is completely authenticated [4].

The Authenticated Speculative Execution proposed by Shi

et al. [15] employs timely (i.e. non-lazy) authentication, but

requires extensive modifications to the memory controller

and on-chip caches. As pointed out by Shi et al. [17], lazy
memory authentication sacrifices security because attacks

can be carried out successfully before they are detected. Un-

fortunately, timely authentication delays some memory op-

erations until authentication is complete. Furthermore, prior

memory authentication schemes rely on MD-5 or SHA-1

to generate authentication codes but under-estimate their

latency. Recent hardware implementations of MD-5 and

SHA-1 show the latencies of more than 300ns [9], which

is prohibitively expensive to use in timely authentication.

Unlike counter secrecy, which is unnecessary [1], unde-

tected malicious modifications of counters in memory are

a critical concern in counter mode memory encryption be-

cause they can be used to induce pad reuse and break the

security of memory encryption. Although prior work ad-

dresses this concern to some extent through memory au-

thentication, we find a flaw that has previously been ignored

or unnoticed. We also find that this flaw can be avoided

by authenticating the counters involved in data encryption,

without a significant impact on performance.

1.3. Summary of Contributions

In this paper we present a new low-cost, low-overhead,

and secure scheme for memory encryption and authentica-

tion. We introduce split counter mode memory encryption,

in contrast with prior schemes which we refer to as mono-
lithic counters. The counter in this new scheme consists

of a very small per-block minor counter and a large ma-
jor counter that is shared by a number of blocks which
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together form an encryption page1. Overflow of a minor

counter causes only an increment of a major counter and

re-encryption of the affected encryption page. Such re-

encryptions are fast enough to not be a problem for real-

time systems. They also result in much lower overall perfor-

mance overheads and can be overlapped with normal pro-

cessor execution using a simple additional hardware mech-

anism. Our major counters are sized to completely avoid

overflows during the expected lifetime of the machine, but

they still represent a negligible space and counter caching

overhead because one such counter is used for an entire en-

cryption page.

The second contribution of this paper is a significant re-

duction of memory authentication overheads, due to several

architectural optimizations and our use of the combined Ga-

lois Counter Mode (GCM) authentication and encryption

scheme [13]. GCM offers many unique benefits. First,

it has been proven to be as secure as the underlying AES

encryption algorithm [13]. Second, unlike authentication

mechanisms used in prior work, GCM authentication can be

largely overlapped with memory latency. Third, GCM uses

the same AES hardware for encryption and authentication

and GCM authentication only adds a few cycles of latency

on top of AES encryption. In a recent hardware implemen-

tation [9], AES latencies of 36.48ns have been reported.

This is a significant advantage compared to 300ns or more

needed for MD5 or SHA-1 authentication hardware used in

prior work on memory authentication. This low authentica-

tion latency, most of which can be overlapped with memory

access latency, allows GCM to authenticate most data soon

after it is decrypted, so program performance is not severely

affected by delaying instruction commit (or even data use)

until authentication is complete.

Finally, in this paper we identify and eliminate a pitfall of

counter mode memory encryption schemes with local coun-

ters. This pitfall makes the system vulnerable to counter
replay attacks in which an attacker forces a block to be en-

crypted with the same pad by rolling back the counter of the

block. The attacker can perform this when a counter is re-

placed from the counter cache while its corresponding data

block remains cached on-chip. To avoid such attacks, in ad-

dition to authenticating data, counters themselves need to

be authenticated every time they are brought on-chip. We

show that counter authentication can be achieved without

significantly affecting performance.

The rest of this paper is organized as follows: Section 2

presents our split counter scheme and Section 3 presents

our GCM authentication scheme, while Section 4 provides

implementation details, Section 5 presents our evaluation

1Our encryption page is similar in size to a typical system page (e.g.

4KB), but there is no other relationship between them. In particular, large

system pages can be used to improve TLB hit rates without affecting the

size of our encryption pages.

setup, Section 6 discusses our evaluation results, and Sec-

tion 7 presents our conclusions.

2. Split Counter Mode Encryption

The choice of a counter size is a major tradeoff in counter

mode memory encryption. Small and medium-size counters

can overflow and cause an entire-memory key change. This

key changes results in a system “freeze” which, for small

counters, can be frequent and cause significant performance

overheads. Large counters do not overflow during the ex-

pected lifetime of the machine, but they incur larger storage

overheads in main memory while performance suffers be-

cause fewer counters fit in the on-chip counter cache.

To keep overall counter sizes low and prevent costly key

changes, we use a split counter, with a small (eight bits or

less) per-block minor counter to reduce storage overheads

and improve counter cache hit rates. We also use a large

(64 bits) major counter that does not overflow for millen-

nia and is shared by consecutive blocks that together form

an encryption page which is a few kilobytes in size. The

upper portion of Figure 2 illustrates the encryption process.

When a block needs to be written back to memory, its ma-

jor counter is concatenated with its minor counter to ob-

tain its overall counter. For each encryption chunk (typi-

cally 16 bytes for AES encryption), a seed is obtained by

concatenating the chunk’s address, the block’s counter, and

a constant encryption initialization vector (EIV) 2. For a

64-byte cache block size and 128-bit AES, there are four

encryption chunks in a block. The encrypted chunks are

then XORed with chunks of plaintext data. The figure

shows that each 64-byte counter cache block stores a ma-

jor counter (M ) for a 4KB page and 64 7-bit minor coun-

ters (m1,m2, . . . ,m64) for data blocks on that page. More

detail on how to choose major and minor counter sizes is

provided in Section 4.2.
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Figure 2. Split Counter Mode Memory En-
cryption and GCM Authentication Scheme.

2The EIV can be unique per process, per group of processes that share

data, unique per system, etc., depending on the needs for protection and

sharing, and whether virtual or physical addresses are used.
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When a minor counter overflows, we re-encrypt only

its encryption page using the next major counter. Re-

encryption of a relatively small encryption page is quick

enough to avoid problems with real-time and interactive ap-

plications. As a result, split counter mode memory encryp-

tion eliminates problematic and costly entire-memory re-

encryptions, while keeping the overall counter size small.

In addition to this main advantage, split counter mode

memory encryption allows additional architectural opti-

mizations, one that dramatically reduces the overall re-

encryption activity and the other to overlap normal proces-

sor and cache activity with re-encryption. Details of these

optimizations are described in Section 4.2.

3. Memory Authentication with GCM

Memory authentication is needed to prevent hardware at-

tacks that may compromise data integrity, such as attacks

that modify data to change the application’s behavior or

produce erroneous results. Authentication is also needed

to keep counter-mode memory encryption secure, because

counters are stored in memory where an active attack can

modify them (e.g. roll them back) and cause pad reuse.

However, efficient, secure, and cost-effective memory au-

thentication is difficult for several reasons.

The first reason for high overheads of memory authen-

tication is that well-known authentication algorithms such

as MD-5, SHA-1, or CBC-MAC have long authentication

latencies, and this long-latency authentication begins when

data arrives on-chip. As a result, the effective memory ac-

cess latency is significantly increased if data brought into

the processor chip can not be used before it is authenticated.

On the other hand, use of data before it is authenticated

presents a security risk [17]. Some use of data can safely

be allowed before its authentication is complete, but only

with relatively complex hardware mechanisms [15].

A second cause for the high overheads of memory au-

thentication is a result of using of a Merkle tree [14]. A

Merkle tree is needed in memory authentication to prevent

replay attacks in which a data block and its authentication

code in memory are replayed (rolled back to their previ-

ously observed values) together. Because the authentication

code for the old data value matches the old value of the au-

thentication code, the attack can remain undetected. In a

Merkle tree, a leaf-level data block is authenticated by an

authentication code. This code resides in a memory block

which is itself authenticated by another code. If K codes

fit in a block, the resulting K-ary tree eventually has a root

authentication code, which can be kept in a special on-chip

register where it is safe from tampering. This root code, in

effect, prevents undetected tampering with any part of the

tree. Codes at different levels of the tree can be cached to

increase authentication efficiency. If each block (of data or

authentication codes) is authenticated when it is brought on-

chip, its authentication must proceed up the tree only until

a tree node is found on-chip. Also, a change to a cached

data or authentication code block does not need to immedi-

ately update the parent authentication node in the tree. The

update can be performed when the block is written back to

memory, at which time the update is propagated up the tree

only to the first tree node which is still on-chip. Still, a

data cache miss can result in misses at all levels of the au-

thentication tree, in which case one block from each level

must be brought from memory sequentially and authenti-

cated in order to complete authentication of the data block.

The resulting bus occupancy and authentication latency can

be large, while effective caching of the multiple tree levels

on-chip can be difficult. Also, if data and authentication

codes are cached together this can result in significantly in-

creased cache miss rates for data accesses.

The final cause of overheads is the size of authentica-

tion codes. The probability of an undetected data modifica-

tion decreases in exponential proportion to the authentica-

tion code’s size, but large authentication codes reduce the

arity of the Merkle tree and increase both storage and per-

formance overheads. For example, only four 128-bit AES-

based authentication codes can fit in a 64-byte block, which

for a 1GB memory results in a 12-level Merkle tree that rep-

resents a 33% memory space overhead.

We address the authentication latency problem by using

Galois Counter Mode (GCM) [13] for memory authenti-

cation. This paper is, to our knowledge, the first to apply

GCM in this setting. As illustrated in Figure 2, GCM is a

counter-based encryption scheme which also provides data

authentication. The encryption portion operates as a stan-

dard counter mode, by generating a sequence of pads from a

seed and XORing them with the plaintext to generate the ci-

phertext. In our case, the plaintext is the data block and the

seed is the concatenation of the block address, the counter

value, and an initialization vector. Decryption is the same,

except that plaintext and ciphertext are swapped. The au-

thentication portion of GCM is based on the GHASH func-

tion [13], which computes a hash of a message ciphertext

and additional authentication data based on a secret key. As

shown in the lower half of Figure 2, the additional authen-

tication data input is unused in memory authentication, and

the GHASH function consists of the chain of Galois Field

Multiplications and XOR operations on the chunks of the

ciphertext. The final GHASH output is XORed with the au-

thentication pad, which is generated by encrypting the con-

catenation of the block address, the counter, and another

initialization vector. The resulting hash can be clipped to

fewer than 128 bits [13], depending on the desired level of

protection.

We choose to use GCM because it has been studied ex-

tensively and shown to be secure [13], and because the la-

tency to compute hash codes can be much less than using

SHA-1 or MD5. As discussed in [13], the hashed data is

sufficiently obscured as to be provably secure, assuming
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that the underlying block cipher is secure, and that no pad is

ever repeated under the same key. We meet both conditions

by using the AES block cipher and by ensuring that seeds

are non-repeating since they are composed of an increment-

ing counter and the block address. The GHASH operation

in GCM can be very fast, so the latency of GCM authentica-

tion can be much less than functions such as SHA-1 or MD5

because the heavy computation (generating the authentica-

tion pad using AES) can be overlapped with loading the

data from memory. Once the ciphertext has been fetched,

the GHASH function can be computed quickly on the ci-

phertext chunks because the field multiplication and XOR

operations can each be performed in one cycle [13], and

the final XOR with the authentication pad can be performed

immediately afterwards because this pad has already been

computed. Lastly, unlike SHA-1 or MD5 which require a

separate authentication engine, GCM uses the same AES

engine used for encryption.

To reduce the impact of the Merkle tree on authentication

latency, we compute authentication codes of all needed lev-

els of the authentication tree in parallel. Upon a data cache

miss, we attempt to locate its authentication code on-chip.

If the code is missing, we request its fetch from memory, be-

gin generating its authentication pad, and attempt to locate

the next-level code on-chip. This is repeated until an on-

chip code is found. When the requested codes begin arriv-

ing from memory, they can be quickly authenticated as they

arrive. Once the authentication chain from the data block to

the original on-chip authentication code is completed, the

data block can be used safely.

Finally, we consider increasing the arity of the Merkle

tree by using smaller authentication codes. Smaller authen-

tication codes reduce the memory space, bandwidth, and

on-chip storage overheads of authentication, but degrade se-

curity in proportion to the reduction in code size. However,

we note that the need for large authentication codes was es-

tablished mostly to reliably resist even a long sequence of

forgery attempts, e.g. in a network environment where each

forged message must be rejected, but little can be done to

prevent attacks. In contrast, a few failed memory authenti-

cations tell the processor that the system is under a hardware

attack. Depending on the deployment environment, correc-

tive action can be taken to prevent the attack from eventu-

ally succeeding. In a corporate environment, a technician

might be called to remove the snooper from the machine

and prevent it from eventually succeeding. In a game con-

sole, the processor may produce exponentially increasing

stall cycles after each authentication failure, to make ex-

traction of copyrighted data a very lengthy process. In both

cases, it is assumed that the user or the software vendor is

willing to tolerate a small but non-negligible risk of a small

amount of data being stolen by a lucky guess. In many en-

vironments such a risk would be tolerable in exchange for

significant reduction in performance overhead and cost.

4. Implementation

4.1. Caching of Split Counters

Our minor counters can be kept in a counter cache, sim-

ilarly to how monolithic counters are cached in prior work.

For major counters, a seemingly obvious choice is to keep

them in page tables and on-chip TLBs. We note, how-

ever, that counters are needed only to service L2 cache

misses and write-backs, and that large major counters may

increase TLB size and slow down performance-critical TLB

lookups. Another obvious choice is to keep major counters

by themselves in a separate region of memory, and cache

them on-chip either in a separate cache or in separate blocks

of the counter cache. However, this complicates cache miss

handling, because a single L2 cache miss can result in both

a major and a minor counter cache miss.

As a result of these considerations, we keep major and

minor counters together in memory and in the counter

cache. A single counter cache block corresponds to an en-

cryption page and contains the major counter and all minor

counters for that page. With this scheme, a single counter

cache lookup finds both the major and the minor counter. If

the lookup is a miss, only one block transfer from memory

is needed to bring both counters on-chip. Furthermore, we

find that the ratio of counter-to-data storage can be easily

kept at one byte of counters per block of data. An example

for a 64-byte block size is shown in Figure 2, where a cache

block stores one 64-bit major counter (M ) and 64 seven-bit

minor counters (m1,m2, . . . ,m64). If the L2 cache block

size is also 64 bytes, a counter cache block corresponds to

an encryption page of 4KB (64 blocks, 64 bytes each). As

another example, a 32-byte block size in both the L2 and

counter caches results in a counter cache block that stores

one 64-bit major counter and 32 six-bit minor counters, with

an encryption page size of 1KB. Our experiments indicate

little performance variation across different block sizes, be-

cause reduced per-page re-encryption work with smaller en-

cryption pages compensates for the increased number of re-

encryptions caused by smaller minor counter size.

4.2. Optimizing Page Re-Encryption

With monolithic counters and with our new split coun-

ters, pad reuse on counter overflow must be prevented by

changing another parameter used in pad generation. With

monolithic counters, the only parameter that can be changed

is the key, which is the same for an entire application and

its change results in entire-memory re-encryption. In our

split counter approach, the major counter can be changed

on minor counter overflow, and this change only requires

re-encryption of one encryption page.

Memory access locality of most applications is such that

some blocks are written back much more often than others.

As a result, some counters advance at a much higher rate

than others and overflow more frequently. Consequently,
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some pages are re-encrypted often, some rarely, and some

never (read-only pages). With monolithic counters, the first

counter that overflows causes re-encryption of the entire

memory, so the rate of advance of the fastest-advancing

counter controls the re-encryption rate for all blocks in the

main memory. In contrast, with our split counters, the re-

encryption rate of a block is determined by the rate of ad-

vance of the fastest-advancing counter on that page. Most

pages are re-encrypted much less often than those that con-

tain the fastest-advancing minor counters. This better-than-

worst-case behavior of split counters results in significantly

less re-encryption work than with monolithic counters. Our

experimental results indicate that our split counter scheme

with a total of eight counter bits per block (7-bit minor

counters and 64-bit major counter shared by 64 blocks)

on average results in only 0.3% of the re-encryption work

needed when eight-bit monolithic counters are used.

In addition to performing less re-encryption work and

splitting this work into smaller pieces to avoid lengthy re-

encryption freezes, page re-encryption has an advantage

over entire-memory re-encryption in that the re-encryption

can be nearly completely eliminated from the processor’s

critical path. Conceptually, re-encrypting a block is a two-

step process where the block is first decrypted by fetching

it on-chip, and is encrypted again with a new major counter

by writing it back to memory. In our page re-encryption,

the first step (fetching blocks on-chip) only needs to be per-

formed for those blocks that are not already on-chip. Our

experimental results indicate that, on average, about half

(48%) of the page’s blocks are present on-chip when the

page re-encryption is needed, which nearly halves the re-

encryption latency and its use of memory, bus, and AES

bandwidth. In contrast, in entire-memory re-encryption the

blocks that are cached on-chip constitute only a small frac-

tion of the main memory, and therefore do not noticeably

reduce the re-encryption work.

Additionally, the second step (writing blocks back) does

not require replacing already-cached blocks immediately.

Since such blocks are likely still needed, we simply set such

blocks to a dirty state, and let them be written back when

they are naturally replaced from the cache. After the major

counter for the page is changed and the minor counters are

zeroed out, write-backs of such blocks will encrypt them

with the new major counter. As a result of this “lazy” ap-

proach, re-encryption of on-chip blocks requires no extra

memory reads or writes.

Finally, our encryption pages are small enough to per-

mit tracking of the re-encryption status of each block within

a page. Such tracking allows normal cache operation to

proceed during page re-encryptions and nearly completely

hides re-encryption latency. To accomplish this, our proces-

sor maintains a small number (e.g. eight) of re-encryption
status registers (RSRs). Each RSR has a valid bit that

indicates whether it is in-use or free. An RSR is tagged

with an encryption page number, and it stores the old ma-
jor counter for the page. An RSR corresponding to a page

also maintains a done bit for each block on that page, to

indicate whether the block has already been re-encrypted.

Re-encryption of a page begins by finding a free RSR (with

a zero valid bit), setting its valid bit to one, tagging the RSR

with the page’s number, copying the old major counter into

the RSR, clearing all the done bits in the RSR, and incre-

menting the major counter in the counter cache. The RSR

then issues requests to fetch the blocks of the page that are

not already cached. As each block arrives from memory, the

RSRs are checked. If the block’s page matches an RSR and

the block’s done bit is not set, the block is decrypted using

the old major counter from the RSR. Then the block’s minor

counter is reset, the done bit in the RSR is set, and the block

is supplied to the cache and its cache state is set to dirty. To

avoid cache pollution from blocks that are fetched by the

RSR from memory, they are not cached and are immedi-

ately written back. Any write-back, regardless of whether it

is cache-initiated or RSR-initiated, is performed normally,

using the block’s minor counter and its page’s major counter

from the counter cache. This completes re-encryption of a

block if its page is being re-encrypted.

When the last done bit is set in the RSR, re-encryption

of the page is complete and the RSR is freed by setting its

valid bit to zero. To avoid re-encryption fetches of blocks

that are already in-cache, the RSR looks up each block in

the L2 cache before requesting that block from memory. For

an already-cached block, the block’s dirty bit is set and its

done bit in the RSR is set immediately without re-fetching

the block from memory.

With this support, the cache continues to service reg-

ular cache requests even for blocks in pages that are still

being re-encrypted, and the processor is not stalled due to

re-encryptions. An access to a block in a page that is be-

ing re-encrypted can either 1) find the block is already re-

encrypted (done bit is one), in which case the access pro-

ceeds normally, or 2) find the block is being fetched by the

RSR (done bit is zero), in which case the request simply

waits for the block to arrive. Similarly, regular cache write-

back of a block in a page that is being re-encrypted can

proceed normally using the new major counter for the page.

We note that these optimizations would be difficult to

achieve for entire-memory re-encryption, because it would

be very costly to track the individual re-encryption status of

the very large number of blocks involved in entire-memory

re-encryption. In our split counter approach, however, the

optimizations can be applied relatively easily to completely

avoid system freezes on re-encryptions and eliminate nearly

all of re-encryptions’ performance overhead.

In our scheme, cache operations can stall only when a

write-back of a block causes another minor counter over-

flow while the block’s page is still being re-encrypted, or

when an RSR cannot be allocated because all RSRs are in

1063-6897/06 $20.00 (c) 2006 IEEE



www.manaraa.com

use. The former situation is easily detected when a page’s

RSR allocation request finds a matching valid RSR, which

can be handled by stalling the write-back until the RSR is

freed. With a sufficiently large minor counters (larger than

4 bits), we find that the situation does not occur because a

page re-encryption can be completed long before a new mi-

nor counter overflow triggers another re-encryption. The

latter situation is also handled by stalling the write-back

until an RSR becomes available. With a sufficient num-

ber of RSRs (e.g. 8), we find that the situation does not

occur because there are typically very few pages that are

being re-encrypted at the same time. Consequently, RSRs

only introduce very small storage overheads of less than 150

bytes. Finally, RSR lookups do not introduce much over-

head because in most cases it can be performed in parallel

with cache misses.

4.3. Data and Counter Integrity Issues

As proven by [1], data secrecy can be maintained even

if the counters in counter-mode encryption are themselves

stored unencrypted. However, counter integrity must be

protected because undetected counter tampering, such as

rolling back the counter to its old value, may lead to pad

reuse. We call such attacks counter replay attacks.

Protection of data integrity can help maintain counter in-

tegrity indirectly. The block’s counter is used to decrypt the

block which is then authenticated, and in GCM the counter

is directly used in authentication of its data block. Because

authentication would fail for a data block whose counter has

been modified, we say that the counter is indirectly authen-
ticated when the corresponding data block is authenticated.

In prior schemes, a data block is authenticated only when

it is brought on chip. However, we observe that a data block

may still reside on-chip while its counter is displaced from

the counter cache to memory. When the data block is writ-

ten back, the counter is re-fetched from memory to encrypt

the block. However, the counter value from memory may

have been changed to its older value to force pad reuse by an

attacker. Therefore, a counter needs to be re-authenticated

when it is brought on chip, before it is incremented and used

for encrypting the block.
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Figure 3. Data and counter Merkle Tree.

To ensure secrecy and integrity of the data, we build a

Merkle tree whose leaf-level contains both the data and its

direct counters. These are the counters directly involved in

encryption and authentication of data blocks. Since the split

counters in our scheme are small, the overhead for incor-

porating direct counters into the Merkle tree is also small.

With GCM, in addition to direct counters, we need deriva-
tive counters which are used in authentication of non-leaf

blocks in the tree. Since derivative counters are only used

for authentication, data secrecy cannot be compromised by

compromising the integrity of these counters.

Figure 3 shows the resulting Merkle tree. The on-chip

hash root guarantees the integrity of the data, the direct

counters, and the other hash codes in the tree.

4.4. Other Implementation Issues

Dealing with Shared Data. In a multi-processor envi-

ronment or for memory-mapped pages shared between the

processor and I/O devices, data may be shared by more

than one entity. Although dealing with such data is be-

yond the scope of this paper, we point out that recently pro-

posed schemes for multiprocessor environments are based

on counter-mode encryption [15, 21] and can easily be inte-

grated with our split counters and GCM scheme.

Virtual vs. Physical Address. The block address that

is used as a component of the block’s encryption seed can

be a virtual or physical address. Virtual addresses are more

difficult to support because they are not directly available in

the lowest level on-chip cache, and different processes may

map the same location at different virtual addresses. Phys-

ical addresses are easier to use but require re-encryption

when memory is paged from or to the disk. Our split

counters and GCM mechanisms are orthogonal to these is-

sues, and are equally applicable when virtual or physical

addresses are used.

Key Management and Security. We assume a trusted

operating system and a scheme that can securely manage

keys and ensure they are not compromised. Our contri-

butions are orthogonal to the choice of a key management

scheme and a trusted platform, and can be used to comple-

ment the platform’s protection against software attacks with

low-cost, high-performance protection against hardware at-

tacks and combined hardware-software attacks.

5. Experimental Setup

We use SESC [8], an execution-driven cycle-accurate

simulator, to model a three-issue out-of-order processor

running at 5GHz, with 2-cycle 4-way set-associative L1 in-

struction and data caches of 16KB each, and with a uni-

fied 10-cycle 8-way set-associative L2 cache of 1MB. For

counter-mode encryption and GCM, the processor also con-

tains a 32KB, 8-way set-associative counter cache. All

caches have 64-byte blocks. A block of our split counters
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Figure 4. Normalized IPC with different memory encryption schemes.

consists of 64 7-bit minor counters and one 64-bit major

counter, for a total block size of 64 bytes and an encryption

page size of 4KB. The simulated processor-memory data

bus is 128bits wide and runs at 600MHz, and below the bus

the uncontended round-trip memory latency is 200 proces-

sor cycles. The 128-bit AES encryption engine we simulate

has a 16-stage pipeline and a total latency of 80 processor

cycles. This is approximately twice as fast as the AES en-

gine reported in [9], to account for future technological im-

provements. The SHA-1 authentication engine is pipelined

into 32 stages and has a latency of 320 processor cycles.

This is more than 4 times as fast as reported in [9], to ac-

count for future technological improvements and possible

developments that might give it an advantage over the AES

engine used for GCM authentication. The default authenti-

cation code size is 64 bits, and we assume a 512MB main

memory when determining the number of levels in Merkle

trees. In addition to authenticating program data, we also

authenticate counters used for encryption to prevent counter

replay attacks described in Section 4.3. To handle page re-

encryptions in our new split-counter mode, the processor is

equipped with 8 re-encryption status registers (RSRs). Nu-

merous other parameters (branch predictor, functional units,

etc.) are set to reflect an aggressive near-future desktop ma-

chine, and all occupancies and latencies are simulated in

detail.

Performance results in our evaluation are shown as nor-

malized instructions-per-cycle (IPC), where the normaliza-

tion baseline is a system without any memory encryption

and authentication.

SPECint 2000 SPECfp 2000

bzip2 gap mcf twolf ammp applu mgrid

crafty gcc parser vortex apsi equake swim

eon gzip perlbmk vpr art mesa wupwise

Table 1. Benchmarks used in our evaluation.

We use 21 of the SPEC CPU 2000 benchmarks [18],

listed in Table 1. Only Fortran 90 benchmarks are omit-

ted because we lack a Fortran 90 compiler for our simulator

infrastructure. For each benchmark, we use its reference in-

put set, in which we fast-forward 5 billion instructions and

then simulate 1 billion instructions in detail.

6. Evaluation

6.1. Split Counter Mode

Figure 4 compares the IPC of our split counter mode

memory encryption (Split) with direct AES encryption (Di-
rect) and with regular counter mode that uses 8-, 16-, 32-

, and 64-bit counters (Mono8b, Mono16b, Mono32b, and

Mono64b, respectively). No memory authentication is used,

to isolate the effects of different encryption schemes. We

only show individual applications that suffer at least a 5%

performance penalty on direct AES encryption, but the av-

erage is calculated across all 21 benchmarks we use.

In our 1-billion-instruction simulations (less than one

second on the simulated machine), we observe overflows of

monolithic counters only in the Mono8b configuration and

overflow of only minor counters in the Split configuration.

Page re-encryptions in the Split configuration are fully sim-

ulated and their impact is included in the overhead shown in

Figure 4. For Mono8b, we do not actually simulate entire-

memory re-encryption, but rather assume it happens instan-

taneously and generates no memory traffic. However, we

count how many times entire-memory re-encryption occurs

and show the number above each bar. Note that our Split
configuration with 7-bit minor counters and fully simulated

page re-encryption has similar performance to the Mono8b
configuration with zero-cost entire-memory re-encryption.

From this we conclude that our hardware support for page

re-encryption succeeds in removing the re-encryption la-

tency from the processor’s critical path.

To estimate the actual impact of entire-memory re-

encryptions in long-running applications, we track the

growth rate of the fastest-growing counter in each appli-

cation. We use these growth rates to estimate the inter-

val between consecutive entire-memory re-encryptions with

monolithic counters. The first four schemes in the tables use

locally incremented counters, which are incremented when

the corresponding data block is written back. It is also pos-

sible to use a globally incremented counter for encryption,

where a single global counter is stored on-chip, incremented

for every write-back, and used to encrypt the block. We note

that the counter value used to encrypt the block must still be

stored separately for each block so that the block can be de-

crypted. However, use of a global counter would eliminate
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Apps Counter Growth Rate (per second) Estimated Time to Counter Overflow

Mono8b Mono16b Mono32b Mono64b Global32b Mono8b Mono16b Mono32b Mono64b Global32b

(million) (seconds) (minutes) (days) (millennia) (minutes)

applu 2090 2075 2035 1961 17.2 0.1 < 1 24 298,259 4

art 2039 2010 1943 1866 17.8 0.1 < 1 26 313,395 4

equake 1323 1314 1307 1272 3.2 0.2 < 1 38 459,914 22

mcf 1211 1101 1031 987 20.3 0.2 1 48 592,417 4

twolf 1079 1059 1026 1005 4.5 0.2 1 48 581,975 16

avg 633 626 577 596 5.9 0.4 2 86 981,417 12

Table 2. Counter growth rate and estimated time to overflow for different encryption schemes.

the vulnerability we discuss in Section 4.3 without the need

to authenticate direct counters.

Table 2 shows the counter growth rate and estimated time

to counter overflow for the five applications with fastest-

growing counters (applu, art, equake, mcf, and twolf). Aver-

ages across all benchmarks are also shown. We note that the

growth rate decreases as counters become larger. This is the

effect of lowered IPC with larger counters: the number of

counter increments is nearly identical for all counter sizes,

but with larger counter sizes the execution time is longer

and the resulting counter increase rate is lower.

The global counter grows at the rate of write-backs in

each application. With the 32-bit counter size, the global

counter overflows in 12 minutes on average, much more fre-

quently than in the 32-bit private counter scheme. We also

noticed that although equake and twolf are among the top

5 for locally incremented counter growth rate, their num-

bers of write-backs per second are below the average. This

is because these two applications have relatively small sets

of blocks that are frequently written back, but the overall

write-back rate is not very high.

Although few entire-memory re-encryptions were ob-

served during the simulated one billion instructions in each

application, we see that the counter overflow problem is far

from negligible. Small 8-bit counters overflow up to ten

times per second in some applications and every 0.4 sec-

onds on average. Larger 16-bit counters overflow at least

once per minute in some applications and every two minutes

on average. Even 32-bit counters overflow more than once

per month in some applications (applu and art in our exper-

iments), which can still be a problem for real-time systems

that cannot tolerate the freeze caused by an entire-memory

re-encryption. We note, however, that 64-bit counters are

free of entire-memory re-encryptions for many millennia.

With our split counters, we achieve the best of both

worlds in terms of performance and counter overflow: small

per-block minor counters allow small storage overhead in

the main memory, good counter cache hit rates and good

performance (Figure 4), while large per-page major coun-

ters prevent entire-memory re-encryptions for millennia

(Table 2).

To help explain the performance of our split counters,

we track the number of data cache blocks that are already

resident on-chip when a page re-encryption is triggered. On

average, we find that 48% of the blocks are already on-chip,

which proportionally reduces the re-encryption work and

overheads. The average time used for a page re-encryption

is 5717 cycles. Note that normal processor execution con-

tinues during this time, although multiple (up to three) page

re-encryptions can be in progress.

0.90

0.95

1.00

128KB 64KB 32KB 16KB 

split monoN
o

rm
al

iz
ed

 IP
C

Figure 5. Sensitivity to counter cache size.

To determine how counter cache size affects the perfor-

mance of our split counter mode memory encryption, we

repeat the experiments from Figure 4 for different counter

cache sizes from 16KB to 128KB. For the regular counter

mode, we use 64-bit counters which do not cause entire-

memory re-encryptions and system freezes. Figure 5 shows

the average (across all 21 benchmarks) for each scheme.

We see that, even with a 16KB counter cache, our split

counter encryption (split 16KB) outperforms monolithic

counters with 128KB counter caches (mono 128KB). The

two schemes can keep the same number of per-block coun-

ters on-chip and have similar counter cache hit rates, but

the split 16KB scheme consumes less bandwidth to fetch

and write back its smaller counters.

Figure 6 compares our new split counter mode with

counter prediction and pad precomputation scheme pro-

posed in [16]. The counter prediction scheme associates a

base counter with each page, and the counter for a block in

that page is predicted as the base counter plus several small

increments. We note that the counter prediction scheme

eliminates on-chip caching of its large 64-bit per-block

counters, but they are still stored in memory and represent

a significant overhead (e.g. with 64 bits per 64-byte block,

the overhead is 1/8 of the main memory), while requiring

modifications to the TLB and page tables. Moreover, this

prediction involves pre-computing N pads with predicted

counter values. This improves the prediction success rate,

but increases AES engine utilization N-fold. We use N=5 in

our experiments, as recommended in [16].
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Figure 6. Comparison of split counters with counter prediction.
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Figure 7. IPC with different memory authentication schemes.

In Figure 6(a), the first group of results shows the hit

and half-miss rate for the counter cache and the prediction

rate for the counter prediction scheme. We observe that the

counter prediction rate in the prediction scheme is slightly

better than the counter cache hit rate in our scheme. The

second group of results shows the percentage of timely pad

pre-computations for memory read requests. In addition to

results with one AES engine for our split counter scheme

(Split) and counter prediction (Pred), we also show results

for counter prediction with two AES engines (Pred 2Eng).

Because it pre-computes five different pads for each block

decryption, counter prediction requires significantly more

AES bandwidth and, with only one AES engine, generates

pads on time for only 61% of block decryptions. With two

AES engines, counter prediction generates timely pads for

96% of block decryptions which is slightly better than the

timely-pad rate of our scheme. We note that the area over-

head for a deeply-pipelined AES engine could be quite sig-

nificant [9]. The third group of results in Figure 6(a) shows

the average normalized IPC. The Pred 2Eng scheme keeps

large 64-bit counters in memory and fetches them with each

data block to verify its predictions. The additional memory

traffic offsets the advantage it has in terms of timely pad

generation, and results in nearly the same performance as

our split-counter scheme.

Figure 6(b) shows the trend of counter prediction rates in

the counter prediction scheme and counter cache hit rates in

our split counter scheme. As the application executes, our

counter cache hit rate remains largely unchanged. In con-

trast, the counter prediction rate starts off with a high pre-

diction rate, because all counters have the same initial value

and are easily predicted. However, as counters change in

value at different rates, their values become less predictable.

Note that our simulation results do not conflict with re-

sults reported in [16], where an extremely deeply pipelined

AES engine is used to achieve very high AES bandwidth.

Our additional experiments also confirm that the counter

prediction scheme with two AES engines outperforms the

Monolithic counter scheme with 64-bit counters. How-

ever, our split counter scheme with a 32kByte counter cache

holds the same number of counters as a 256kByte cache

with large monolithic counters, and needs far less band-

width to fetch and write back its small counters.

6.2. GCM Authentication

Figure 7 compares our GCM memory authentication

with SHA-1 memory authentication whose latency we vary

from 80 to 640 cycles. No memory encryption is used,

to isolate the effects of authentication, and the results are

normalized to the IPC of a processor without any support

for memory authentication. Note that no counter-mode en-

cryption is used, so only GCM maintains per-block counters

needed for its authentication. As before, the average is for

all 21 benchmarks, but we show individually only bench-

marks with significant IPC degradation.

0.6

0.7

0.8

0.9

1.0

Lazy Commit Safe Parallel
Auth.

Non-parallel
Auth.

GCM SHAN
o

rm
al

iz
ed

 IP
C

Figure 8. IPC with GCM and SHA-1 under dif-
ferent authentication requirements.
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Figure 9. IPC with different memory encryption-authentication combinations.

We observe that, in almost all cases, our GCM authen-

tication scheme performs as well or slightly better than 80-

cycle SHA-1, and it should be noted that 80 cycles is an

unrealistically low latency for SHA-1. As the latency of

SHA-1 is increased to more realistic values, the benefit of

GCM authentication becomes significant, especially in ap-
plu, art, equake, mgrid, swim, and wupwise. On average,

GCM authentication results in only a 4% IPC degradation,

while SHA-1 with latencies of 80, 160, 320, and 640 cycles

reduces IPC by 6%, 10%, 17%, and 26% respectively. The

only case where GCM authentication performs relatively

poorly is in mcf, due to additional bus contention caused

by misses in the counter cache.

To determine how security requirements affect authenti-

cation performance, Figure 8 shows the IPC for our GCM

scheme and for SHA-1 (with the default 320-cycle latency)

with Lazy authentication in which an application continues

without waiting for authentication to complete, Commit au-

thentication in which a load that misses in the data cache

cannot retire until its data has been authenticated, and Safe
authentication in which a load stalls on a cache miss until

authentication of the data fetched from memory is complete.

With Lazy authentication, the latency of authentication is

largely irrelevant, and therefore bus contention for counter

fetches and write-backs causes a slight degradation in GCM

performance compared to SHA-1. However, as discussed

in Section 3, this Lazy authentication presents a security

risk, so a more strict form of authentication is desired. With

Commit or Safe authentication, the latency of authentica-

tion becomes important and GCM has a considerable per-

formance advantage. Even the strictest Safe authentication,

which with SHA-1 results in a 24% IPC reduction, results

in a tolerable 6% IPC reduction with GCM.

The second group of results in Figure 8 compares par-

allel authentication of all off-chip Merkle tree levels on a

cache miss against sequential authentication of tree levels

where the authentication of a level begins only when the

previous level has been authenticated. Parallel authentica-

tion provides an average IPC increase of 3% for GCM and

2% for SHA-1. Although the IPC benefit seems modest,

in terms of overhead reduction it is significant – with GCM,

the IPC overhead of memory authentication is nearly halved

with parallel tree-level authentication.

6.3. GCM and Split Counter Mode

Figure 9 shows our results when we use both memory en-

cryption and memory authentication. Our combined GCM

encryption and authentication scheme with split counters is

shown as Split+GCM. We compare this scheme to a scheme

that uses GCM with monolithic counters (Mono+GCM), a

scheme that uses split-counter mode encryption with SHA-

1 authentication (Split+SHA), a scheme that uses mono-

lithic counters and SHA-1 authentication (Mono+SHA),

and a scheme that uses direct AES encryption and SHA-1

authentication (XOM+SHA). As before, all IPCs are nor-

malized to a system without any memory encryption or au-

thentication. Only the benchmarks with significant differ-

ences among the schemes are shown individually, but again

the average is for all 21 benchmarks. Our combined GCM

mechanism with split counters results in an average IPC

overhead of only 5%, compared to the 20% overhead with

existing monolithic counters and SHA-1 authentication. As

before, we note that split counters by themselves may seem

a marginal improvement and that most of the benefit is due

to the GCM authentication. However, we note that our

split counters nearly halve the IPC overhead, from 8% in

Mono+GCM to only 5% in Split+GCM.
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Figure 10. IPC with different authentication
requirements.

We repeat the experiments from Figure 9 with different

authentication requirements, with and without parallel au-

thentication of Merkle tree levels, and using different au-

thentication code sizes. These results are shown in Fig-

ure 10. The arrow in each set of experiments indicates our

default configuration, and only one parameter is varied in

each set of experiments. These results confirm our previous

separate findings for GCM and split-counter mode, and in-

dicate that our new combined scheme consistently outper-
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forms previous schemes over a wide range of parameters,

and that each of the two components of the new scheme

(split-counter mode and GCM) also consistently provides

performance benefits.

7. Conclusions

Protection from hardware attacks such as snoopers and

mod chips has been receiving increasing attention in com-

puter architecture. In this paper we present a new com-

bined memory encryption/authentication scheme. Our new

split counters for counter-mode encryption simultaneously

eliminate counter overflow problems and reduce per-block

counter size to improve their on-chip caching. We also

dramatically improve authentication performance and secu-

rity by using GCM authentication, which leverages counter-

mode encryption to reduce authentication latency and over-

lap it with memory accesses. Finally, we point out that

counter integrity should be protected to ensure data secrecy.

Our results indicate that our encryption scheme has a

negligible overhead even with a small (32KB) counter cache

and using only eight counter bits per data block. The com-

bined encryption/authentication scheme has an IPC over-

head of 5% on average across SPEC CPU 2000 bench-

marks, which is a significant improvement over the 20%

overhead of existing encryption/authentication schemes.

Our sensitivity analysis confirms that our scheme maintains

a considerable advantage over prior schemes under a wide

range of system parameters and security requirements.
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